Evaluation of Cephalopoda extract against some nosocomial bacterial isolates

Al-Maliky Kh. Haydar*

ABSTRACT:

To evaluate the pathogenicity of Staphylococcus aureus and Escherichia coli in male mice and to compare between antibacterial activity Cefotaxime 250mg and cephalopoda extract (Sepia sp.) and showed the effect on some blood parameters in male mice. The mice were divided into seven groups (six mice for each) ,all treatments were given intraperitoneally to experimental mice. First group (control animals) were injected with 0.9 % normal saline (0.1 ml for each animal), second group were received i.p. single dose of *E. coli* $(0.1 \times 10^8 \text{ CFU})$, third group were injected with a single dose of *S. aureus* (0.1×10^8 CFU), fourth group were injected with a single dose of *E. coli* $(0.1 \times 10^8 \text{ CFU})$ then treated with (0.1 Cefotaxime 250mg) for 3 days fifth group were injected with a single dose of S. aureus (0.1×10^8) CFU) then treated with (0.1 Cefotaxime 250mg) for 3 days, sixth group were injected with a single dose of *Escherichia coli* $(0.1 \times 10^8 \text{ CFU})$ then injected with (0.1 of extract,720 µg for each animal) for 3 days, seventh group were injected i.p. with a single dose of *S. aureus* (0.1×10^8 CFU) then injected with (0.1 of extract, 720 µg for each animal) for 3 days. The results conducted that all infected mice were suffered from elevated in their body temperatures, while decline in their body weights and subsequently, changes in blood parameters compared with normal value. On the other hand, treated mice with Sepia extract show healthy and maintained their body temperatures and body weights as normal, in addition to blood parameters remained within normal ranges. These above results explained the role of Sepia extract as antimicrobial substance, acting against nosocomial bacterial isolates.

Evaluation of Cephalopoda extract against some nosocomial bacterial *Thi-(isolates

Introduction:

Escherichia coli is a member of the normal intestinal flora, but when transmitted from normal habitat will be considered as pathogens which caused several clinical important diseases, represented by diarrhea disease, septicemia and meningitis (Geo et al., 2004).E. coli have ability to invasive from natural habitat to different body sites and subsequent caused several medical important diseases, represent by urinary tract infection. diarrhea and septic conditions (Hashim, 2005). Most investigations explained the bacterial infections, which occurred due to nosocomialacquired infections, especially Gram-negative and Gramposative pathogens (Founior and Philpott, 2005). Staphylococcus aureus pathogen causing significant morbidity and mortality in both community and hospital acquired infections (Lowy, 1998). It causes a diverse array of infections from relativity minor skin and wound infections to more serious and life threatening disease such as pneumonia, endocarditis, osteomyeliti,

arthritis and sepsis (Nilsson et al .,1998). On other hands, Methicillin resistance S. aureus (MRSA) is the major focus of public awareness of healthcare-associated infection (HCAI) problems in many countries (Petra et al.,2012). Most Gram-positive bacteria such as Enterococcus spp. ,Staphylococcus aureus, and Streptococcus pyogenes survive for months on dry surface, also many Gram-negative species such as Acinetobacter spp., E.coli, Klebsiella Pseudomonas aeruginosa, spp., Serratia marcescens and Shigella spp. can survive on inanimate surfaces even for month. These species found among the most frequent isolates from patients with nosocomial infections (Axel et al., 2006).

There is an everlasting need to discover new antimicrobial compounds with diverse chemical structures and novel mechanisms of action due to the alarming increase that has been witnessed in the incidence of both new and reemerging infectious diseases. The

Thi-Qar Medical Journal (TQMJ):Vol(8) No(1

increasing resistance of antibiotics by the microorganisms pathogenic develops the demand for the isolation of novel alternative antimicrobial substances (Obeidatet al., 2012). A further big concern is the development of resistance to the antibiotics in current clinical use (Ilhan et al., 2007). The Class: Cephalopoda includes nautilus, cuttlefishes, squids and octopods which are exclusively marin e, varying in their form, size and nature (Worms, 1983). Marine invertebrates offer a good source of potential antimicrobial drugs (Mayer et al.,2007; Jayaraj et al., 2008). Many studies on bioactive compounds from molluscs exhibiting antibacterial, antileukemic and antiviral activities have been reported (Rajaganapathy et al.,2000). Proteins and glycoproteins with antibacterial activity have been demonstrated in the different organs of molluscs (Pakrashi, 2001).

The antimicrobial activity of polysaccharides extracted from cephalopods such as *Sepia aculeate* and *Sepia brevimana* and heparin and heparin — like glycosaminoglycans (GAGs) from the cephalopod

Euprymnaberryi was reported against the human pathogenic microorganism (Shanmugam et al., 2008a; Shanmugam et al., 2008b). The aim of this study to investigate the pathogenicity of Staphylococcus aureus and Escherichia coli in male mice and to compare of antibacterial activity between Cefotaxime 250mg and cephalopoda extract (Sepia sp.) and showed the effect on some blood parameters in male mice.

Materials and methods: Bacterial isolates:

Tested bacteria were obtained from Al-Hussain Teaching Hospital ,and they identified by API System (Steve and Dennis 2001).

Bacterial infectious doses: The infections doses of Staphylococcus *aureus* and *Escherichia coli* were 10⁸ CFU (Nathan et al., 2000; Victor et al.,2007 ; Shigenobu et al., 2012). Isolated bacterial were inoculated in nutrient broth for 48 hours at 37 c, the centrifuged (2500 rpm\5 minutes), then comparing turbidity of the test (0.5×10^8) suspension with CFU) standard tube (Anandia and Juncarb, 2009).

Animals :

White albino male mice (25-35 grams) were obtained from the animal house at the Science college in Thi-Qar University. The mice were housed in standard metal cages (6 mice/cage).

Experimental design:

The mice were divided into seven groups comprising six animals in each group. All treatments were given intraperitoneally to experimental mice.

1-First group (control group)were injected with 0.9 %normal saline (0.1ml for each animal).

2-Second group were received i.p. single dose of *Escherichia coli* (0.1for each animal).

3-Third group were injected i.p. with a single dose of *S. aureus* (0.1for each animal).

4-Fourth group were injected i.p. with a single dose of *Escherichia coli* (0.1for each animal) then treated i.p. with (0.1 Cefotaxime 250mg) for 3 days.
5-Fifth group were injected i.p. with a single dose of *S. aureus* (0.1for each animal) then treated i.p. with (0.1 Cefotaxime 250mg) for 3 days.

6-Sixth group were injected i.p. with a single dose of *Escherichia coli* (0.1for each animal) then injected i.p. with (0.1 of extract 720 μ g for each animal) for 3 days.

7-Seventh group were injected i.p. with a single dose of *S. aureus* (0.1for each animal) then injected i.p. with (0.1 of extract 720 μ g for each animal) for 3 days.

The effective dose of *Sepia* sp. extract (720 μ g) was determined according to (Litchfield and Wilcoxon, 1949).

Collection of Blood: Blood was collected from heart from each animal after three and seven days posttreatment in tubes with EDTA then used for the determination many blood parameters: white blood cells number, HCT,PDW, MCH,RDW, MPV,PCT,MCV, platelet.

Results:

The results showed mice injected with pathogenic bacteria have a significant decrease in their body weight compared to the control, especially infected by *E.coli* (P: 0.0008),while there was no significant change in the body weight of mice utjmed@utq.edu.iq

that treated with extract and

antibiotic (Table 1).

Animal groups	Average weight/gm/	Average weight/gm/ after
	Before	
Control	27.8	28.1
<i>E. coli</i> + antibiotic	27.6	27.3
S. aureus+ antibiotic	27.8	27
S. aureus	29.9	24
E. coli*	29.5	23
<i>E.coli</i> + extract	29.5	29.4
S. aureus+ extract	27.9	27

Table 1: Average weight of an experimental mice before and after infection

Mice infected by E.coli p value: 0.0008 (body weight)

From table 2 showed increases in the body temperature of infected mice groups from 37°C into 38.3- 38.5 C°, whereas noted animals treated with extract and antibiotic have normal temperature.

Average	Contr	<i>S</i> .	Е.	Е.	<i>S</i> .	<i>E.coli</i> +extr	<i>S</i> .
temperat	ol	aure	coli	<i>coli</i> +antibi	<i>aureus</i> +antibi	act	aureus+extr
ure		us		otic	otic		act
Before	37č	37č	37č	37č	37č	37č	37č
After	37č	38.5	38.3	37č	37.2č	37č	37č
		č	ċ				

Table 2: Average temperature of an experimental micebefore and after infection.

Re-isolation of E. coli and S. aureus from an experimental mice

Table 3 showed re-isolation of *E. coli* and *S. aureus* after 3 and 7 days from liver and spleen of control and infected groups. The re-isolation percentages of tested bacteria appeared as 100% in liver and spleen after 3 days while the percentage decrease to 25% in liver and spleen after 7 days.

Evaluation of Cephalopoda extract against some nosocomial bacterial isolates <u>utjmea@utq.eau.iq</u>

organs	Control	S. aureus	E. coli	S. aureus	E. coli after 7
		after 3 days	after 3 days	after 7 days	days
Liver 1	-	+ (100%)	+ (100%)	+ (25%)	+ (25%)
Spleen 1	-	+ (100%)	+ (100%)	+ (25%)	+ (25%)
Liver 2	-	+ (100%)	+ (100%)	+ (25%)	+ (25%)
Spleen 2	-	+ (100%)	+ (100%)	+ (25%)	+ (25%)
Liver 3	-	+ (100%)	+ (100%)	+ (25%)	+ (25%)
Spleen 3	-	+ (100%)	+ (100%)	+ (25%)	+ (25%)

Table 3: Re-isolation of E. coli and S. aureus from infected mice organs of E. coliand S. aureus after 3 and 7 days of infections

The re-isolation percentage of *E. coli* and *S. aureus* after 3 days from liver and spleen of groups that received antibiotic no detectable growth except animal 2 and 3 that have percentage 25% (Table 4). On the other hand the same table explain, groups were received *Sepia* sp. extract have no detectable growth of *E. coli* and *S. aureus*.

Table4: Re-isolation of *E. coli* and *S. aureus* from infected mice organs of *E. coli*,S. aureus+ antibiotic and *E. coli*, *S. aureus* + extract groups

organs	<i>E. coli+</i> antibiotic	S. aureus+ antibiotic	<i>E.coli</i> + extract	S. aureus+ extract
Liver 1	-	+ (25%)	-	-
Spleen 1	-	+ (50%)	-	-
Liver 2	-	+ (25%)	-	-
Spleen 2	+ (25%)	+ (50%)	-	-
Liver 3	+ (25%)	+ (25%)	-	-
Spleen 3	+ (25%)	+ (25%)	-	-
Liver 4	-	-	-	-
Spleen 4	-	-	-	-
Liver 5	-	-	-	-
Spleen 5	-	-	-	-
Liver 6	-	-	-	-
Spleen 6	-	-	-	-

Thi-Qar Medical Journal (TQMJ):Vol(8) No(1) 2014(25-38)

utjmed@utq.edu.iq

Blood parameters:

The results showed no a significant difference in the hematological composition of the blood parameters between the control group and groups treated with extract and antibiotic (Table 5), in the same table showed the groups that injected with pathogenic bacteria have increased of white blood cells specially lymphocytes and less number of monocytes and granulocytes ,and showed the same groups have decreasing in level of HCT,PDW, MCH. On the other hand there is increasing in level of RDW, MPV,PCT,MCV, platelet numbers.

	Control	E.coli	<i>S</i> .	E.coli	<i>S</i> .	E.coli	S. aureus
			aureus	+Extract	aureus	+antibiotic	+antibiotic
					+extract		
WBC	4.8	13.5	12.47	5.1	4.1	5	5.6
Lym	1.80	12	11	4.2	3	4	4.1
Mon	0.20	0.55	0.62	0.46	0.5	0.4	0.55
Gran	0.40	0.95	0.85	0.46	0.6		
НСТ	36.4	58.7	59	35.4	36.5	38	39
MCV	50	67	62	52.3	50	55	51
MCH	15.4	11.3	12.6	18	15	16	15.9
MCHC	31	28.9	28.9	31.4	30		
RDW	17.6	24	20.2	16.1	15.7	16.2	17
Plt	620	898	1172	567	527	520	511
MPV	7.6	16	18.9	6.9	7	7.4	7.1
PCT	0.47	0.77	0.83	0.39	0.5	0.4	0.32
Pdw	13	2.7	6.4	12.4	11.1	13	12

Table (5): Effect of *Sepia* sp. extract on some blood parameter in male mice.

Discussion:

In this study, there are statistically significant correlation between body temperature, body weight and bacterial infection. Elevated body temperature could be considered as one of the index parameter for the evaluation at bacterial infection (Deirdre et al., 2006). In addition to that, there is detectable of body weight loss before and after experimental infection, the same finding were recorded by other researchers (Lars et al., 2005).

The re-isolation percentages of tested bacteria appeared as 100% in liver and spleen after 3 days whereas reduced to 25% after 7 days. Present results, revealed a scientific fact that immune response formed against the bacterial inoculate, and this immune state reduce the risk of septicemia and death. This results was consistent with other results recorded by Cryzet al., (1983); Hassan, (2008) and Manati et al.,(2009). The animals that treated with extract have no detectable growth in these groups, the antibacterial activity of extract due to the extract rich with

protein an amino acid specially prolein (Degaim, 2009).Degaim and Abbas, (2010) showed the antibacterial activity of Sepia sp. extract in-vitro on human pathogenic bacteria. The comparison between the effect of extract and antibiotic on re-isolation pathogenic bacteria showed the extract has best effect than antibiotic. were agreement with The results Patterson Edward and Murugan (2000) and Patilet al., (2001) reported ink that the extracts showed antibacterial activity, and showed the maximum antibacterial activity of ink Pseudomonas extract against Staphylococcus aeruginosa, epidermidis, and E.coli.Antibacterial activity has previously been described in a wide range of molluscan species muricid such as mollusks(Dicathaisorbita) and sea hare (Dolabellaauricularia) (Andersonand Beaven, 2001; Benkendorffet al., 2001). In most of the species studied, the haemolymph, egg masses or the whole body have been tested for activity. Antimicrobial peptides have been isolated and characterized from

utjmed@utq.edu.iq

the haemocytes of Mytilusedulis al., (Mitta*et* 2000a) and М. galloprovincialis (Mitta et al., 2000b), and from these a hare Dolabella (lijimaet al., auricularia 2003). (Vairamaniet al., 2012) noted antimicrobial activity of Cuttlebone of

•

Sepiellainermis on many pathogenic bacteria.Mean values of MCV, MCH and MCHC decreased with respect to time but this reduction was relatively more in mean MCV as compared to others.

· · · 、 //

Reference:

Anandia, M. and Juan Carbs, P. (2009). Procedure Manual" Mitratereductase assay
 Drug susceptibility testing for Mycobacterium tuberculosis, 20:8-12.
 Anderson, RS. andBeaven, AE.(2001). Antibacterial activities of
 oyster(*Crassostreavirginica*) and mussel (*Mytilusedulis*and *Geukensiademissa*)
 plasma.Aquat. Living Res., 14: 343-349.

3.Axel, K.; Ingeborg, S. and Gunter,K. (2006). How long do nosocomial pathogens persist on inanimate surfaceseven for month. These species found among the most frequent isolates from patients with nosocomial infections BMC infectious diseases, 6:2-8.

4.Benkendorff, K.; Bremner, J.B. and Davis, A.R. (2001). Indole derivatives from the egg masses of muricidmolluscs. Molecules, 6: 70-78.

5.Cryz, J.R.; Furer, E. and Germanier, R. (1983). Protection against P. auruginosa infection in a murine burn wound sepsis model by passive transfer of antitoxin A, antielastase and antilipopoly saccharide. Infect. Mune.39(3): 1072-1079.

6.Degaim, Z.D. (2009). Extraction of protein compound from some marine Mollusca species and study their antifungal activity. M .S . C. Thesis. Collage Science.

Evaluation of Cephalopoda extract against some nosocomial bacterial isolates

7.Degiam, Z.D. and Abbas, A.T. (2010). Antimicrobial activity of some crude marine Mollusca extracts against some human pathogenic bacteria. Thi-Qar Medical Journal ., 4(3):142-147.

8.Deirdre, C.; Sameer,E.; Owen, R.; Brent, W. and Robert, L.(2006). Burn wound infection. Clinical Microbiology Reviews: 403-434.

9.Fournior, B. and Philpott, D. (2005). Recognition of Staphylococcus aureus by innate immune system.Clin.Microbiol. Rev., 18(3): 521-540.

10.Geo, F.; Brook; Janet, S. Butel and Stephen, A.M. (2004). Medical microbiology.23ed: 252-264. Toronto,London.

11.Hashim, T.S. (2005).Isolation and diagnosis of burn contaminated bacteria and study the effect of fat extract on their growth. Master thesis, Baghdad.university, 10-22.

12.Hassan, S.H.H. (2008). Some aspect of local and systemic immunity to associated bacteria withskin burn. Ph.D.: 1-13.

13.Ilhan, S.; Savaroğlu, F. and Çolak, F. (2007).Antibacterial and AntifungalActivity of *Corchorusolitorius*L. (Molokhia) Extracts. Inter. J. Nat.Eng. Sci., 1(3): 59-61.

14.Jayaraj, SS.;Thiagarajan, R.;Arumugam, M. andMullainadhan, P. (2008).Isolation, purification and characterization of [beta]-1,3-glucan bindingprotein from the plasma of marine mussel *Pernaviridis*. Fish ShellfishImmunol., 24: 715-725.

15.Litchfield, J.T and Wilcoxon F A. (1949). A simplified method of evaluating doseeffect experiments.*J. Pharmacol.* Exp. Ther. 96:99-113, 1949.

16.Lowy, FD. (1998). *Staphylococcusaureus* infections.N Engl J Med 1998; 339(8): 520-532.

17.Manati, A.; JamshidKohanteb; DavoodMehrabanii; Aziz Japoni, MasondAmini;
Ahmad Hosseia and NazaninKhalili (2009). Active immunization using exotoxin A confers protection against Pseudomonas auruginosa infection in a mouse model.
BMC Microbiology. 10:9-23.

18. Mayer, AMS.; Rodriguez, AD.; Berlinck, RGS. and Hamann, MT. (2007).

Marin Thi-Qar Medical Journal (TQMJ):Vol(8) No(1) 2014(25-38) anthe

antiplatelet, antiprotozoal, antituberculosis, and antiviralactivities; affecting the

cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Com. Biochem.

Physiol. C: Toxicol. Pharmacol., 145: 553-581.

19.Mitta ,G.; Hubert, F.;Dyrynda, EA.;Boudry, P. andRoch, P. (2000a). Mytilin Band MGD2, two antimicrobial peptides of marine mussels: Genestructure and expression analysis. Dev. Comp. Immunol., 24: 381-393.

20.Mitta, G.;Vandenbulcke,F.; Hubert ,F.;Salzet,M.and Roach, P.

(2000b).Involvement of mytilins in mussel antimicrobial defense. J. Biol.Chem., 275: 12954-12962.

21.Nathan, A.B.; Emily, M.Z.; Paul, M.L.; Edward, A.C.; Jennifer, E.A.; Martin, L.Y. and Warren, S.H. (2000). A Model of infected burn wounds using *Escherichia coli* O18: K1: H7 for the study of Gram – negative bacteremia and sepsis. Infect. Immun. 68(6): 3349-3351.

22.Nilsson, IM.; Patti, J.;Bremell, T.; Hook, M. andTarkowski, A.(1998).Vaccination with a recombinant fragment of collagen adhesion provides protection against Staphylococcus aureus-mediatedseptic death. J Clin Invest; 101(12): 2640-2649.

23.Obeidat, M., M. Shatnawi, M. Al-Alawi, E. Al-Zubi and H. Al-Dmoor*et al.*, 2012. Antimicrobial activity of crude extracts of some plant leaves. Res. J. Microbiol., 7: 59-67.

24. Pakrashi, A. (2001). Indian J. Physicol. Pharmacol., 45: 249-252.

25.Patil, R.; Jeyasekaran, G.; shanmugam, S.A.; and Jeyashakila, R.(2001). Indian J Marine.Sci 30: 264-267.

26.Patterson Edward, and Murugan, 2000. Indian J Marine.Sci 26:206-208.

27.Petra, G.; Frank, S.; Michael, B. and Christine, G. (2012). Decreasing healthcareassociated Methicillin-resistant *S. aureus* (MRSA) infections antibacterial resistance data from the German national nosocomial surveillance system kiss.Antimicrobial. Resist. Infect. Contral, 26:21-3.

28.Shanmugam, A.; Mahalakshmi, TS. and Barwin vino, A. (2008a).

Antimicrobial Activity of Dalysaesbarides lealated from the Cuttlabara of Evaluation of Cephalopoda extract against some nosocomial bacterial Sepiaa isolates

to selected Antimicrobial Activity for Human pathogenicMicroorganisms. J. Fish. Aqua. Sci., 3(5): 268-274.

29.Shanmugam,A.;Amalraj, T. andPalpandi, C. (2008b). Antimicrobial Activity ofSulfated Mucopolysaccharides [Heparin and Heparin – LikeGlycosaminoglycans (GAGs)] from Cuttlefish EuprymnaberryiSasaki, 1929. Trends in App. Sci. Res., 3(1): 97-102.

30.Shigen, M.; Masaharu,Y.; Hiroshi, N. and Masaryuki, K. (2012). Experimental protection of mice against lethal Staphylococcus aureus Infection by Novel Bacteriophage.Journal of Ifectious disease. 187(4): 613-624.

31.Steve, K.A. and Dennis, S. (2001). Microbiology: A photographic Atlas for the laboratory. Benjamin Cummings. An imprint of Addison Wesley Longman, Inc., 105-108.

32.Vairamani,S.; Subhapradha,N.; Ramasamy,P.; BarwinVino,A.; Raveendran, S. and Shanmugam, A. (2012). Antibacterial Activity of Methanolic Extract of Whole Body Tissue and Ethylene Diamine Tetra Acetate Extract of Cuttlebone of *Sepiellainermis*(Orbigny, 1848).Research Journal of Microbiology, 7: 263-272.
33.Victor, L.Y.; Dennis, S. H.; Hansen, T.; Wen, C.K.; Keith, p.K. and Anne, V.G.(2007). Virulence Characteristics of *Klebsiella* and Clinical Manifestations of *K. pneumoniae* Bloodstream Infections.Emerging infectious diseases. 13(7): 986-992.

34.Worms, J.(1983). World fisheries for cephalopods.A synoptic overview.In: Caddy, JF (Eds), Advances in Assessment of World CephalopodResources. FAO Fish, Tech. Paper, pp. 231- 452.

Thi-Qar Medical Journal (TQMJ):Vol(8) No(1) 2014(25-38)

تقيم خلاصة قدمية الرأس ضد بعض العزو لات البكتيرية المسببة لأمراض المستشفيات حيدر خميس المالكي فرع الأحياء المجهرية -كلية الطب -جامعة ذي قار

الخلاصة

لتقيم خلاصة قدمية الرأس ضد بعض العزولات البكتيرية مثل الأشريشيا القولونية والمكورات العنقودية الذهبية والتي عزلت من مستشفى الحسين التعليمي. حيث تم در اسة الفعالية الدوائية للمضاد الحيوي cefotaxime

Thi-Qar Medical Journal (TQMJ): Vol.(8), No.(1), 2014 <u>utjmed@utq.edu.iq</u>

Evaluation of Cephalopoda extract against some nosocomial bacterial isolates

Average	Contr	S.	Ε.	Ε.	<i>S.aureus</i> +anti	<i>E.coli</i> +ext	<i>S.</i>
tempera	ol	aureu	со	<i>coli</i> +antibi	biotic	ract	aureus+ex
ture		S	li	otic			tract
Before	37;	37;	37	37;37;	37č	37;37;	37 ; 37 ; 37
	37;37.	37;	;	37		37	
	3	37	37				
			;				

Thi-Qar Medical Journal (TQMJ): Vol.(8), No.(1), 2014 <u>utjmed@utq.edu.iq</u>

			37				
After	37; 37	38;	38	37, 37.5	, 37.3; 37.2; 37	37;37;	37 ; 37 ;
	;	38.5;	;	37 <mark>(ns)</mark>		37.2 <mark>(ns)</mark>	37 <mark>(ns)</mark>
	37.2 <mark>(</mark>	39.5 <mark>(</mark>	39				
	NS)	ns)	;				
			38				

Animal groups	Average weight/gm/ Before	Average weight/gm/ after
Control	27.8; 27; 28.2	28; 29; 27.7p= 0.3437 (ns)
<i>E. coli</i> + antibiotic	27; 28;28	27.3; 27; 27.7p=0.4411 (ns)
S. aureus+ antibiotic	27.2; 28.8; 26	27, 28; 26p= 0.7546 (ns)
S. aureus	30; 31; 29.9	24
E. coli	29.5; 30.5; 29	23,22,24p= 0.0008Yes
<i>E.coli</i> + extract	29.5; 30; 29.6	29; 30; 29.8p=0.5780(ns)
S. aureus+ extract	27; 28; 27.8	27; 27; 27.2p=0.5780(ns)